## UPSC Electrical Engineering Syllabus Paper-1

**1. Circuit Theory:**

Circuit components; network graphs; KCL, KVL; circuit analysis methods: nodal analysis, mesh analysis; basic network theorems and applications; transient analysis: RL, RC, and RLC circuits; sinusoidal steady-state analysis; resonant circuits; coupled circuits; balanced 3-phase circuits. Two-port networks.

**2. Signals and Systems :**

Representation of continuous-time and discrete-time signals and systems; LTI systems; convolution; impulse response; time-domain analysis of LTI systems based on convolution and differential/difference equations. Fourier transform, Laplace transform, Z-transform, Transfer function. Sampling and recovery of signals DFT, FFT Processing of analogue signals through discrete-time systems.

**3. E.M. Theory :**

Maxwell’s equations, wave propagation in bounded media. Boundary conditions, reflection, and refraction of plane waves. Transmission lines: travelling and standing waves, impedance matching, Smith chart.

**4. Analog Electronics :**

Characteristics and equivalent circuits (large and small-signal) of Diode, BJT, JFET and MOSFET. Diode circuits: Clipping, clamping, rectifier. Biasing and bias stability. FET amplifiers. Current mirror; Amplifiers: single and multi-stage, differential, operational feedback and power. Analysis of amplifiers; frequency response of amplifiers. OPAMP circuits. Filters; sinusoidal oscillators: criterion for oscillation; single-transistor and OPAMP configurations. Function generators and wave-shaping circuits. Linear and switching power supplies.

**5. Digital Electronics :**

Boolean algebra; minimisation of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers, and decoders. Sequential circuits: latches and flip-flops, counters and shift registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Logic implementation using programmable devices (ROM, PLA, FPGA).

**6. Energy Conversion :**

Principles of electromechanical energy conversion: Torque and emf in rotating machines. DC machines: characteristics and performance analysis; starting and speed control of motors. Transformers: principles of operation and analysis; regulation, efficiency; 3-phase transformers. 3-phase induction machines and synchronous machines: characteristics and performance analysis; speed control.

**7. Power Electronics and Electric Drives **:

Semi-conductor power devices: diode, transistor, thyristor, triac, GTO and MOSFET-static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters: fully-controlled and half-controlled; principles of thyristor choppers and inverters; DC-DC converters; Switch mode inverter; basic concepts of speed control of dc and ac motor drives applications of variable-speed drives.

**8. Analog Communication** :

Random variables: continuous, discrete; probability, probability functions. Statistical averages; probability models; Random signals and noise: white noise, noise equivalent bandwidth; signal transmission with noise; signal to noise ratio. Linear CW modulation: Amplitude modulation: DSB, DSB-SC, and SSB. Modulators and Demodulators; Phase and Frequency modulation: PM & FM signals; narrows band FM; generation & detection of FM and PM, Deemphasis, Preemphasis. CW modulation system: Superheterodyne receivers, AM receivers, communication receivers, FM receivers, phase-locked loop, SSB receiver Signal to noise ratio calculation or AM and FM receivers.

## UPSC Electrical Engineering Syllabus Paper-2

**1. Control Systems :**

Elements of control systems; block-diagram representations; open-loop & closed-loop systems; principles and applications of feedback. Control system components. LTI systems: time-domain and transform-domain analysis. Stability: Routh Hurwitz criterion, root-loci, Bode-plots and polar plots, Nyquist’s criterion; Design of lead-lad compensators. Proportional, PI, PID controllers. State-variable representation and analysis of control systems.

**2. Microprocessors and Microcomputers :**

PC organization; CPU, instruction set, register setting diagram, programming, interrupts memory interfacing, I/O interfacing, programmable peripheral devices.

**3. Measurement and Instrumentation :**

Error analysis; measurement of current-voltage, power, energy, power-factor, resistance, inductance, capacitance, and frequency; bridge measurements. Signal conditioning circuit; Electronic measuring instruments: multimeter, CRO, digital voltmeter, frequency counter, Q-meter, spectrum-analyzer, distortion-meter. Transducers: thermocouple, thermistor, LVDT, strain-gauge, piezo-electric crystal.

**4. Power Systems: Analysis and Control :**

Steady-state performance of overhead transmission lines and cables; principles of active and reactive power transfer and distribution; per-unit quantities; bus admittance and impedance matrices; load flow; voltage control and power factor correction; economic operation; symmetrical components, analysis of symmetrical and unsymmetrical faults. Concepts of system stability: swing curves and equal area criterion. Static VAR system. Basic concepts of HVDC transmission.

**5. Power System Protection **:

Principles of overcurrent, differential, and distance protection. Concept of solid-state relays. Circuit breakers. Computer-aided protection: Introduction; line, bus, generator, transformer protection; numeric relays and application of DSP to protection.

**6. Digital Communication :**

Pulse code modulation (PCM), differential pulse code modulation (DPCM), delta modulation (DM), Digital modulation, and demodulation schemes: amplitude, phase, and frequency keying schemes (ASK, PSK, FSK). Error control coding: error detection and correction, linear block codes, convolution codes. Information measure and source coding. Data networks, 7-layer architecture.